948 research outputs found

    Type 0 Brane Inflation from Mirage Cosmology

    Get PDF
    We consider a three-dimensional brane-universe moving in a Type 0 String background. The motion induces on the brane a cosmological evolution which, for some range of the parameters, exhibits an inflationary phase.Comment: 11 pages, latex, one figur

    Short time-scale optical variability of the dwarf Seyfert nucleus in NGC 4395

    Full text link
    We present optical spectroscopic observations of the least-luminous known Seyfert 1 galaxy, NGC 4395, which was monitored every half-hour over the course of 3 nights. The continuum emission varied by ~35 per cent over the course of 3 nights, and we find marginal evidence for greater variability in the blue continuum than the red. A number of diagnostic checks were performed on the data in order to constrain any systematic or aperture effects. No correlations were found that adequately explained the observed variability, hence we conclude that we have observed real intrinsic variability of the nuclear source. No simultaneous variability was measured in the broad H-beta line, although given the difficulty in deblending the broad and narrow components it is difficult to comment on the significance of this result. The observed short time-scale continuum variability is consistent with NGC 4395 having an intermediate-mass (~10^5 solar masses) central supermassive black hole, rather than a very low accretion rate. Comparison with the Seyfert 1 galaxy NGC 5548 shows that the observed variability seems to scale with black hole mass in roughly the manner expected in accretion models. However the absolute time-scale of variability differs by several orders of magnitude from that expected in simple accretion disc models in both cases.Comment: 16 pages, 14 figures, 5 tables, accepted for publication in MNRA

    Tsirelson's bound and Landauer's principle in a single-system game

    Get PDF
    We introduce a simple single-system game inspired by the Clauser-Horne-Shimony-Holt (CHSH) game. For qubit systems subjected to unitary gates and projective measurements, we prove that any strategy in our game can be mapped to a strategy in the CHSH game, which implies that Tsirelson's bound also holds in our setting. More generally, we show that the optimal success probability depends on the reversible or irreversible character of the gates, the quantum or classical nature of the system and the system dimension. We analyse the bounds obtained in light of Landauer's principle, showing the entropic costs of the erasure associated with the game. This shows a connection between the reversibility in fundamental operations embodied by Landauer's principle and Tsirelson's bound, that arises from the restricted physics of a unitarily-evolving single-qubit system.Comment: 7 pages, 5 figures, typos correcte

    Inflation Induced by Vacuum Energy and Graceful Exit from it

    Get PDF
    Motivated by brane cosmology we solve the Einstein equations with a time dependent cosmological constant. Assuming that at an early epoch the vacuum energy scales as 1/logt1/logt , we show that the universe passes from a fast growing phase (inflation) to an expanding phase in a natural way

    Fiscal consolidation in a low inflation environment: pay cuts versus lost jobs

    Get PDF
    We construct a model of a monetary union to study fiscal consolidation in the Periphery of the euro area, through cuts in public sector wages or hiring when the nominal interest rate is constrained at its lower bound. Consolidation induces a positive wealth effect that increases demand, as well as a reallocation of workers towards the private sector, which together boost private activity. However, in a low inflation environment, demand is suppressed and the private sector is not able to absorb the additional workers. Comparing the two instruments, cuts in public hiring increase unemployment persistently in this environment, while wage cuts reduce it. Regions with higher mobility of labour between the two sectors are able to consolidate more effectively. Price flexibility is also key at the zero lower bound: for a higher degree of price rigidity in the Periphery, consolidation becomes harder to achieve. Consolidations can be self-defeating when the public good is productive, or a complement to private consumption

    Cosmological Evolution in a Type-0 String Theory

    Get PDF
    We study the cosmological evolution of a type-0 string theory by employing non-criticality, which may be induced by fluctuations of the D3 brane worlds. We check the consistency of the approach to O(alpha ') in the corresponding sigma-model. The ten-dimensional theory is reduced to an effective four-dimensional model, with only time dependent fields. We show that the four-dimensional universe has an inflationary phase and graceful exit from it, while the other extra dimensions are stabilized to a constant value, with the fifth dimension much larger than the others. We pay particular attention to demonstrating the role of tachyonic matter in inducing these features. The Universe asymptotes, for large times, to a non-accelerating linearly-expanding Universe with a time-dependent dilaton and a relaxing to zero vacuum energy a la quintessence.Comment: 33 pages LATEX, seven eps figures incorporate

    Information Theoretically Secure Hypothesis Test for Temporally Unstructured Quantum Computation (Extended Abstract)

    Get PDF
    The efficient certification of classically intractable quantum devices has been a central research question for some time. However, to observe a "quantum advantage", it is believed that one does not need to build a large scale universal quantum computer, a task which has proven extremely challenging. Intermediate quantum models that are easier to implement, but which also exhibit this quantum advantage over classical computers, have been proposed. In this work, we present a certification technique for such a sub-universal quantum server which only performs commuting gates and requires very limited quantum memory. By allowing a verifying client to manipulate single qubits, we exploit properties of measurement based blind quantum computing to give them the tools to test the "quantum superiority" of the server

    PVD Coatings’ Strength Properties at Various Temperatures by Nanoindentations and FEM Calculations Determined

    Get PDF
    Nanoindentation is usually applied on thin films at ambient temperatures for hardness determination. Recently, instruments for conducting nanoindentation at elevated temperatures have been developed facilitating measurements up to 700 oC. Both indenter and specimen, if necessary, are heated in an inert atmosphere to avoid film oxidations. In the described investigations, nanoindentations were conducted on cemented carbides and high speed steel specimens, coated with various films, up to 400 oC. The obtained results were subjected to statistical analysis to estimate their reliability. Moreover, the results were evaluated by appropriate FEM (Finite Element Method) algorithms for determining the coatings’ elasticity modulus, yield and rupture stress as well as hardness at various temperatures. The results reveal a non-linear temperature dependence of the coating properties
    corecore